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Charge transport scaling in turbulent electroconvection
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We describe a local-power-law scaling theory for the mean dimensionless electric current Nu in turbulent
electroconvection. The experimental system consists of a weakly conducting, submicron-thick liquid-crystal
film supported in the annulus between concentric circular electrodes. It is driven into electroconvection by an
applied voltage between its inner and outer edges. At sufficiently large voltage differences, the flow is unsteady
and electric charge is turbulently transported between the electrodes. Our theoretical development, which
closely parallels the Grossmann-Lohse model for turbulent thermal convection, predicts the local-power law
Nu~ F(I)RYP’. R and P are dimensionless numbers that are similar to the Rayleigh and Prandtl numbers of
thermal convection, respectively. The dimensionless function F(I'), which is specified by the model, describes
the dependence of Nu on the aspect ratio I'. We find that measurements of Nu are consistent with the

theoretical model.
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I. INTRODUCTION

Turbulent Rayleigh-Bénard convection (RBC), the para-
digm for studies in convective turbulence, remains a fasci-
nating unresolved puzzle [1]. For a century, theories of tur-
bulent RBC have focused on understanding the globally
averaged heat transport through a layer of fluid. The devel-
opment of models has been largely driven by improved ex-
perimental measurements of the heat current, which have
time and again revealed unexplained discrepancies between
experiment and theory. In response, mathematical models
have become increasingly sophisticated during the past five
decades [2]. In recent years, ambitious experimental, theoret-
ical, and computational projects have been undertaken and
the study of turbulent RBC has been considerably reinvigo-
rated [3-16]. All this activity suggests some clear directions
for future work. Two recent experiments highlighted the cru-
cial role of the system shape and lateral extent [9,11]. In this
paper, we exploit the unique features of a system closely
analogous to RBC, electrically driven convection in a thin
annular film, to shed light on these features of turbulent con-
vection.

Turbulent RBC is described phenomenologically in terms
of several organizing structures which are experimentally ob-
served. The convecting fluid has sharp thermal boundary lay-
ers at its top and bottom surfaces. Plumes grow erratically
from these surfaces and spontaneously organize into a noisy
but coherent wind. This large-scale circulation (LSC), or tur-
bulent wind, advects the plumes so that hot thermals rise
along a laterally bounding wall while cold plumes sink along
the diametrically opposite wall. The interior of the cell away
from the LSC is typically assumed to be well-mixed, isotro-
pic, and homogeneous. This picture is partially corroborated
by measurements using containers with approximately equal
height and breadth. The extent to which this phenomenologi-
cal picture, particularly of the LSC, is geometry- and shape-
dependent is currently the most pressing question in the
study of turbulent RBC.

The aspect ratio I', which is the ratio of the horizontal
span to the vertical separation of an RBC apparatus, quanti-
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fies the geometry. It is important to perform experimental
studies with a wide range of I'. These have been difficult to
accomplish, however, due to practical considerations. The
requirement of strong forcing, which favors large vertical
separation, is opposed by the constraint that the apparatus
remain a manageable laboratory size, limiting its horizontal
span. Consequently, the majority of experiments have I"'=1.
Turbulent electroconvection, which is largely unencumbered
by scale considerations, has emerged as a complementary
experimental system for the study of convective turbulence
[17].

Electroconvection driven by dc potentials in thin smectic
liquid-crystal films has been extensively studied, mostly in
the weakly driven, laminar regime [17-28]. The system con-
sists of a smectic-A liquid-crystal film suspended in the an-
nulus between the edges of concentric circular metallic elec-
trodes, as shown schematically in Fig. 1. An applied electric
potential difference between the inner and outer electrodes
drives an electric current through the film. Surface charges
accumulate on the two free surfaces that separate the electri-
cally conducting film from charge-free space. This inverted
surface charge density is unstable to electric forcing in much
the same manner as the inverted mass density distribution of
RBC is unstable to buoyancy forces. When the applied volt-
age V exceeds the critical voltage V., the fluid is organized
into convection vortices, as shown in Fig. 2(a). The flow
advects electric charge between the electrodes constituting a
convection electric current. At higher driving, the flow be-
comes unsteady while retaining the large-scale structure of

(b)

FIG. 1. Schematics of the experiment: (a) top and (b) side.
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FIG. 2. (Color online) Qualitative visualization of electrocon-
vective flow, characterized by a film of uneven thickness: at (a) V
=100 V and (b) V=250 V. Data, however, were acquired only from
uniformly thick films in which no flow is visible.

convecting vortices, as shown in Fig. 2(b). The turbulent
electric charge transport is analogous to the heat flux in tur-
bulent RBC.

Other ac driven forms of electroconvection have been
studied in bulk, three-dimensional liquid crystals [29-32,39].
In this paper, we concern ourselves only with two-
dimensional, surface charge driven convection under dc po-
tentials. However, it seems clear that the turbulent regime in
these other systems might be amenable to a similar sort of
scaling analysis [32].

The globally averaged heat transport in RBC is quantified
in dimensionless form by dividing out the contribution due to
molecular conduction. It is then referred to as the Nusselt
number Nu. Almost every theoretical model over the past
five decades has attempted as its central goal to describe the
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functional dependencies of Nu. It is generally accepted that
Nu=Nu(Ra,Pr,I"). Here Ra is the Rayleigh number which
quantifies the thermal forcing, Pr is the Prandtl number
which is the ratio of the fluid’s kinematic viscosity to thermal
diffusivity, and I" is the aspect ratio of the system.

Early models for Nu used the laterally extended limit, I'
— o, while some recent theories assume the confined case of
I'=1 [2]. A few years ago, Grossmann and Lohse (GL) pro-
posed a unifying theory for the Ra and Pr scaling of global
variables like Nu [6]. Although the theory does not account
for the aspect-ratio dependence explicitly, it does contain ad-
justable parameters which have been fit to I'= 1 experimen-
tal data.

The GL scheme begins by decomposing thermal turbu-
lence into two constituents: a kinetic component and a ther-
mal component. Then, using a second phenomenological dis-
tinction between the boundary layer and the bulk, the GL
theory estimates the kinetic and thermal dissipations in each
region using dimensional arguments. Finally, GL theory de-
rives the dependence of Nu on Ra and Pr by balancing the
exact formulations for the total dissipations versus the domi-
nant contributions from the bulk and/or boundary layer. The
various combinations of bulk/boundary layer, Kinetic/
thermal, and other considerations lead to the fragmentation
of the Ra-Pr parameter space into ten regimes [8]. Within
each regime, GL theory predicts the local-power-law scalings
Nu ~ Ra?Pr® with regime-dependent exponents vy and 8. Near
regime boundaries, we expect crossover effects. Unlike pre-
vious scaling theories, GL theory predicts no purely power-
law scaling for Nu. Rather, Nu=f(Ra,Pr) can be approxi-
mated by regime-dependent combinations of local power
laws for I'=1 systems. Recent precision experiments are
better modeled by the GL crossover scaling theory than by
simple power laws [3,7,12].

Deep similarities between the phenomenologies and
mathematical descriptions of turbulent electroconvection and
RBC make possible the development of a GL theory for
electroconvection. In this paper, we exploit these parallels to
describe the nondimensional electric current (also denoted
Nu, the electric Nusselt number) in turbulent electroconvec-
tion. We find that Nu=F(I")f(R,P), where R and P are the
electrical analogs of the Rayleigh and Prandtl numbers of
conventional RBC. The function f(R,P) can be approxi-
mated by local power laws with the same regime-dependent
exponents as in the GL theory. We find that the theoretical
predictions are consistent with electric current measure-
ments. Unlike the GL model, where it is assumed that I’
~ 1, the naturally periodic annular geometry of electrocon-
vection permits the explicit calculation of the aspect-ratio
dependence F(I'). The aspect-ratio dependence of Nu is not a
power law, as is the case in the theory of Shraiman and
Siggia [34], but instead approaches a constant for large I'.
We find surprisingly broad agreement between the function ¥
and measurements from both turbulent electroconvection and
RBC [17].

This paper is organized as follows. We start by describing
the physical model for annular electroconvection in thin
freely suspended liquid-crystal films. We then derive rigor-
ous results for the globally averaged kinetic and electric dis-
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sipations. Using two examples that are directly relevant to
the current experiments, we show the derivation of local
power-law scaling for Nu and for the Reynolds number Re of
the large-scale circulation. Important features of the experi-
mental system are then recounted and we describe direct
comparison between the scaling theory and experimental
data. We finish with a brief conclusion where we discuss the
complementary relationship between our work on turbulent
electroconvection and conventional RBC.

II. SCALING THEORY
A. Background

The basic equations for annular electroconvection are in-
troduced in this section; for full details, see Ref. [24]. A close
parallel with RBC is evident, which allows us to develop a
scaling theory, analogous to GL theory, in subsequent sec-
tions.

The annular film is a two-dimensional (2D) sheet that in a
cylindrical coordinate system spans the region r,<r<r, at
z=0. Here r;(r,) are the radii of the inner (outer) electrodes.
On the plane z=0, the inner (outer) electrodes occupy the
region 0<r<r;(r,<r<®). The film is a Newtonian, in-
compressible, electrically conducting fluid with 2D density
p, molecular viscosity 7, and electric conductivity o. We
write the equations governing the fluid and charge in the
annular film using 2D differential operators, field variables,
and material parameters. The fluid flow is described by the
Navier-Stokes equation with an electric body force,

p(du+u-Vu)=-VP+ nV?u+gE. (1)

Here the fluid velocity u=(u,v), P is the pressure, g is the
surface charge density, E is the electric field, and gE is the
electric body force. The conservation of charge leads to a
continuity equation,

dq+V-J=0, J=0E+qu. (2)

The current density J is composed of the usual Ohmic or
conduction density oE and the convective current density
qu. The electric field and charge density are not independent
variables and have to satisfy Maxwell’s equations. Magnetic
effects are negligible. In the region |z| #0, i.e., above and
below the film and electrodes, space is free of charges and so
Laplace’s equation for the electric potential holds,

Vigs=0, Vi=V2+d. 3)

In the above, the subscript 3 indicates that the potential and
gradient operator are defined in three dimensions. The poten-
tial ¢; can be determined in the upper half space by solving
Eq. (3) subject to boundary conditions at z=0 and at infinity.
The surface charge density ¢ on the film due to the discon-
tinuity in the electric field normal to the film is given by

qg= — €00+ + €0 Y3|.c0-= — 260,53,
RE<r<r,. (4)

In the above, ¢, is the permittivity of free space. Equations
(1)—~(4) model the electroconvection system. The equations
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are subject to rigid boundary conditions on the fluid velocity:
u=0 at r=r; and r=r, and to Dirichlet boundary conditions
for the electric potential at z=0 and at infinity. The applied
potential is V volts for r<r; and 0 volts for r=r, and at
infinity. On the film, the electric potential is determined by
satisfying the current density J and the boundary conditions
at r=r;,r,. Using the Dirichlet Green function
G(r,0,z;r',0',7'), we can formally solve Egs. (3) and (4)
for the surface charge density,

I PR e i
= o[yl Y= t(r,0,2=0). 5

The integral is over the bounding surface, in this case the z
=0 plane and surface at infinity. Equation (5) essentially de-
fines ¢ in terms of a functional g whose argument is the
electric potential in the plane z=0. On this plane, the electric
field E and potential ¢ are related though E=-V. Using
this relation and the definition of g, denoting the kinematic
pressure field p=P/p and kinematic viscosity v=n/p, the
four Egs. (1)—(4) reduce to the following pair:

&,u+u~Vu=—Vp+vV2u—MV¢, (6)
p
oV
dp+u-Vip=——. (7)

Written in this way, Egs. (6) and (7) bear striking similar-
ity to the Boussinesq equations for turbulent RBC with the
scalar temperature and electric potential fields assuming
similar roles. However, the rather complex and nonlocal
functional relationship g[ ¢] between g and ¢ given in Eq. (5)
makes it difficult to carry out the analogous GL argument for
electoconvection. Fortunately, by splitting the integrand in
Eq. (5) into local and nonlocal parts, g can be expanded as

€

¢+ (nonlocal terms). (8)

glyl=

o 1

To a first (order) approximation, the functional g[ /] can be
approximated as a linear function g(#) so that the surface
charge density and the electric potential on the film are re-
lated locally. Then d,g is constant and Eq. (7) is identical to
the heat equation in RBC, with electric potential in place of
temperature. Nevertheless, in Eq. (6) the approximated driv-
ing body force ~ 'V i does not identically correspond to the
buoyancy force ~VT in RBC, with the replacement of elec-
tric potential ¢ with temperature field 7.

The solutions of Egs. (6) and (7) are subject to the usual
no-slip boundary conditions on u and the applied electric
potential boundary conditions on . Three dimensionless pa-
rameters describe the state of the system. R, the analog of
the Rayleigh number in RBC, is the control or external driv-
ing parameter, and is proportional to the square of the ap-
plied voltage. It is given by
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ev?
R=—"—. )
on
‘P, the analog of the Prandtl number in RBC, is the ratio of
the charge to viscous relaxation time scales in the film,

p=—1 (10)

pol(r,—r)

The geometry is uniquely characterized by the radius ratio
a=r;/r,. However, in order to make comparison to RBC, it
is more appropriate to describe the geometry in terms of the
aspect ratio I', which is the ratio of the horizontal or lateral
dimension to the vertical or transverse dimension. Since the
lateral dimension is ambiguous in the annular geometry, I is
not uniquely determined. However, I" can be consistently
taken to be the ratio of the circumference of the film mea-
sured at the inner electrode to the film width, so that

27y,

. 2ma

(11)

B r,—1; Tl-a
Two possible alternative definitions of the aspect ratio use
the mid-radius circumference or the outer electrode circum-
ference as the lateral dimension, leading to I',, and I',, re-
spectively. The two aspect ratios so defined are related to I’
defined in Eq. (11) as I'=I",,— w=I",— 2. Since the various
definitions of the aspect ratio are very similar, we have cho-
sen to use the form in Eq. (11) because in that case 0<T
=<, as is true for conventional RBC systems. The alterna-
tive definitions I'), and I', have 7 and 27 as their lower
bounds. In any case, direct comparisons between rectangular
and annular systems converge in the «— 1 or I'— oo limits.

The critical parameters and the critical mode numbers at
the onset of electroconvection have been successfully cap-
tured using the exact base state and the aforementioned local
approximation for the perturbations, as is described in detail
in Ref. [24]. The critical R in electroconvection has been
found both theoretically and experimentally to be ~100,
smaller than the corresponding Ra.=1708 in RBC. The rea-
sons for the difference are, first, the two convection systems
have different base states [24] and, secondly, their driving
body forces do not identically correspond to each other, even
under the local approximation. However, one would expect
the same critical Rayleigh number in the case of identical
driving forces and similar geometry. Indeed, a study of 2D
annular RBC [33] showed a critical Rayleigh number
~2000.

In the following, we assume that go ¢ holds at much
higher forcing and we develop the GL theory for turbulent
electroconvection within the local approximation, which
makes Egs. (6) and (7) very similar to the Boussinesq equa-
tions for thermal convection.

B. Global averages

In this section, we derive exact expressions for various
globally averaged quantities, which, according to the GL pro-
cedure, will be balanced against scaling estimates, as dis-
cussed in the following section.
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The convective contribution to the electric current is de-
termined by dividing out the conduction current from the
total current. This dimensionless ratio is the Nusselt number
Nu. The net electric current is radial between the inner and
outer electrodes with a net zero contribution from azimuthal
currents. Thus at any radial position r;<r=<r,, the integral
over the azimuth of the radial component of the current den-
sity is equal to the total electric current. Hence, we find

3€ J - tdl jg uq — od,pdl

Nu= - . (12)
% J cond tdl % - a-ﬁr‘;bconddl

In the above, we have used the definition of J given in Eq.
(2). The contour d! is a circle at radius r, and t is a radially
outward unit vector. Note that u is the radial component of
the fluid velocity u and ¢4 is the electric potential for the
conductive state. On the inner electrode (r<r;), Yeona=V,
while on the outer electrode (r=r,), . q=0. On the film
where r;<r=<r,, ¥ onq 1S given by

Vv
l//condz_lni' (13)

Ina r,
Evaluating the terms in Eq. (12) using Eq. (13), we find the
relation

2
f (g — a4 rd6
Nu=— (14)
u= .
2o V/In(1/a)

We use the angular brackets (- ) to denote averages over
the fluid volume (actually its area). We write

2w (r,
f“-rdrdﬁ f J - rdrdf
0 r;
frdrdﬂ

As in the GL theory for RBC, our charge transport scaling
theory begins with the kinetic and electric dissipation rates

€,(r,60,0) = (V- u)?,

()= (15)

w(rl = r?)

i

€y(r,0,0) = o(Vih)*, (16)

We denote the averages of the above dissipations over the
fluid volume as

€= (&u(r,0.0) = (W(V - u)?),

€y=(€y(r,6,1)) =(a(V))*). (17)

The velocity and electric potential fields share the azi-
muthal periodicity of the annulus and thus permit the calcu-
lation of the globally averaged kinetic and electric dissipa-
tions of Eq. (17). Assuming time-stationarity for the spatial
averaging and the local assumption g ¢, we find from Eqgs.
(6) and (7) the following relations for the Kinetic dissipation
€,=(¥(V-u)?) and electric dissipation €,=(a(V))?):
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_ VRP?(Nu-1) s

()= )y 1) (18)
2

20V-°Nu (19)

= ln(l/a)(ri - riz) ’

The above relations have interesting similarities and dif-
ferences to those for the corresponding quantities in RBC,
which are given in Refs. [6,8,34]. The differences are en-
tirely due to the annular geometry of the electroconvection
system. In the narrow gap limit, in which the radius ratio
— 1 while film width d=r,—r; remains constant, Egs. (14),
(18), and (19) recover the familiar forms for RBC between
parallel plates.

C. Grossmann-Lohse scalings

In this section, we make several assumptions about the
spatial organization of the turbulent flow, in the same manner
as in the scaling theory of Grossmann and Lohse (GL), as
they explain in Sec. II of Ref. [6]. In particular, GL assumed
that a turbulent wind, or LSC, comprising a single cell occu-
pies the entire I'~1 RBC container. The wind is driven by
plumes from the boundary layers and it in turn drives the
interior or bulk. With the boundary layers and bulk concep-
tually distinguished, GL estimate the relative boundary and
bulk dissipations. Here, we make analogous assumptions
about turbulent electroconvection. As shown in Fig. 2(b), the
turbulent flow consists of counter-rotating convection vorti-
ces around the annulus. The vortices, which are unsteady,
have fluctuating boundaries that are defined by the averaged
turbulent LSC. Each vortex is assumed to be roughly square
with dimension r,—r;. Near the electrodes, well developed
viscous and electric boundary layers with respective thick-
nesses A, and A, are assumed. Away from the electrodes, the
vortex interior, or bulk, is taken to be well mixed. We do not
account for the slight differences between the boundary layer
dimensions at the inner and outer electrodes due to the an-
nular geometry. This asymmetry diminishes with increasing
aspect ratio and is assumed to be always small.

The total dissipations calculated in Egs. (18) and (19) are
decomposed into contributions from the boundary and bulk
regions of the convection cells as follows:

€= E 4+ eb"lk
bulk
€)= 6.// + e(//u ) (20)

The contribution 631 of the boundary layer kinetic dissipation

is defined as

631 = <€u(r, 0’ t)>b1 = <V(V . u)2>b]’

21 2
f J < rdrd@ f f - rdrd@
7oAy

W T R B WY

=

1)

k € bulk

The electric dissipation in the bul is defined as
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b””‘ = (ey(r 6.0)puic = { (V) Dot

2 ro—)\l/,
[7 e anao
0 rithy

wl(r, - )\¢)2 - (r;+ )\w)z].

<' : '>bu1k = (22)

The other two boundary and bulk dissipations are similarly
defined. We assume that

Nu=F()f(R,P). (23)

It is our purpose to determine the as yet unspecified func-
tions F and f. We begin by estimating the bulk and boundary
layer dissipations. As in GL theory [6], in the following we
ignore numerical factors of O(1).

1. Kinetic dissipations

The turbulent wind or LSC sets the velocity scale U for
both the boundary and bulk regions. A viscous or Kkinetic
boundary layer, assumed to be laminar, scales as \,~ (r,
—r;)Re”"2. Here Re is the Reynolds number based on veloc-
ity U and film width r,—r;. Finally, we assume that \,<<r;,
ANy <<r,, and N\, <<r,—r;, which greatly simplifies the averag-
ing in Egs. (21) and (22). For the boundary layer, we esti-
mate the kinetic dissipation by

Ay

bl
_ri

o

2
St )

V3

We estimate the bulk (areal) kinetic dissipation rate using
the main assumption of the GL theory, that the LSC stirs the
interior. In 3D RBC, GL theory estimates the bulk kinetic
dissipation rate with the convective term of the LSC. The
kinetic energy which is injected at the largest scale, that of
the LSC, is assumed to be dissipated at small scales via the
forward turbulent energy cascade in the bulk [6]. However,
forced and freely decaying 2D turbulence differs markedly
from 3D turbulence [35,36]. The absence of the vortex
stretching term in 2D leads to vorticity conservation along
fluid particle paths in an unforced, inviscid system. Notwith-
standing this difference, numerical simulations of 2D
Rayleigh-Benard turbulence [37,38] show remarkably simi-
lar phenomenology and heat-transport scalings to those of
3D turbulent RBC systems. Hence, the key assumption of the
GL theory, namely that the LSC circulation drives the bulk,
is valid for both 2D and 3D systems [38]. Thus, we assume
that we may directly use the convective term of the LSC to
estimate the dissipation rate. This leads to the following ex-
pression;

Re’?. (24)

3

U
e =V -u)y~u-(u-Viu~ :

Fo— T

o
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v
(ro_ri)4

The relations (24) and (25) are identical to their counterparts
for turbulent RBC, given in Sec. II C of Ref. [6].

Re. (25)

2. Electric dissipations

The applied potential V drops over the electric potential
boundary length A, which we assume is small such that
Ny<rj, Ny<<r,, and A, <r,—r;. As with the kinetic dissipa-
tions, these requirements greatly simplify the averaging pre-
scribed by Egs. (21) and (22). Since most of the applied
potential drops over A, at the inner and outer electrodes,
there is effectively an electrical short, i.e., a constant poten-
tial, in the bulk. Invoking the standard arguments of RBC,
where the thermal short determines a relation between the
thermal boundary layer and the heat transport, we find that

B (r;+r,)In(1/a)

v Nu (26)

Here, we have assumed that half the applied potential drops
over the potential boundary layer at the inner electrode and
half at the outer electrode. We assume that the electric po-
tential boundary layer thicknesses are the same at the inner
and outer electrodes. This symmetry is exact for radius ratio
a—1 or aspect ratio I'—o. Our derivation implicitly as-
sumes that the role of the asymmetry is not crucial at smaller
Ir.

In the boundary layer, the electric dissipation is given by

| ARRY
&) =(a(V) )y ~ U<—> . (27)
)\./l ro—r;
By balancing the latter two terms in Eq. (7),

u- Vi~ U:;"/’, (28)
we find, up to a linear expansion of g(i), that

v or,-r)V

Ny U\

(29)

By using U as the velocity scale, we have implicitly assumed
that A,,<\,,. Substituting in Eq. (27) for V/\,, from Eq. (29)
and for A, from Eq. (26), we get

o ( 1+ a) In(1/a)Re PaV?
€y~ 2
Nu(r, —r;)
The dissipations estimated in Egs. (24), (25), and (30) are
sufficient to define the two relevant regimes for turbulent
electroconvection. In one scenario, we assume that both the

electrical and kinetic dissipations occur primarily in the
boundary. Then Eq. (20) will be written as

(30)

l-«

€= €,
€~ 63/1. (31)

This corresponds to the I, regime of Ref. [8]. For the left-
hand sides in the above equations, we use the globally aver-
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aged dissipations derived from the equations of motion given
in Egs. (18) and (19). For the right-hand sides, we use the
boundary layer estimates given in Egs. (24) and (25). After
some algebraic manipulation, we find

Nu = F(T)YRYPY8  (regime I, of Ref. [8]).  (32)

Repeating the above procedure for

~ (hulk

€ u

€)= e‘l’pl, (33)
which corresponds to regime II; of Ref. [8], we find that

Nu o F(T)RPYS  (regime 11, of Ref. [8]).  (34)

In general, this procedure gives a power-law dependence
for f in Eq. (23) of the form

f~R"P°. (35)

It also follows that the Reynolds number Re of the vortices,
based on the radial velocity of the fluid and the separation
between the electrodes r,—r;, scales as

Re ~ R P%. (36)

We find the same set of exponents v, 8, y«,d: as the GL
theory for turbulent RBC. The I, and II; regimes are relevant
to the low R and broad P range that can be accessed by
smectic electroconvection.

3. Aspect-ratio dependence F(T")

After balancing the dominant contributions, as in Egs.
(31) and (33), we find that the power law R”P? has a com-
mon algebraic prefactor F that is only a function of the as-
pect ratio I'. Unlike in previous studies of RBC in Cartesian
geometry [34], F(I') is not itself a power law. Instead, it is
given by

I‘+7Tln<r+2ﬂ'>. (37)

F(T) = =

F(I') specifies the aspect-ratio dependence of the global
charge or heat transport, as contained in the Nusselt number
Nu. The Reynolds number Re of the large-scale circulation,
however, is local to each vortex and is independent of I'.

III. EXPERIMENT AND RESULTS

In this section, we describe the main features of the ex-
perimental apparatus and procedure, the data analysis, and
the results. Our apparatus is similar to one used previously
for studies of thin-film electroconvection in the weakly non-
linear regime [ 18-28], which has more recently been adapted
to the turbulent regime [17]. Other forms of electroconvec-
tion in bulk liquid crystals have similarly been extended to
study scaling in the turbulent regime [32,39].

The experiment consists of an annular liquid-crystal film
of octylcyanobiphenyl (8CB) freely suspended between two
concentric stainless steel electrodes as shown in Fig. 1. The
annular film was about 2 cm in diameter. The liquid crystal
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is held by the sharpened edges of the electrodes, and the
excess material at the edges of the film is kept to a minimum.
The meniscus of smectic liquids has been shown experimen-
tally to be very small, of order 10—100 wm [40], and is thus
much smaller than the boundary layer thicknesses defined
earlier.

The experiment is enclosed by an aluminum box which
serves both as a Faraday cage and as a rough vacuum cham-
ber. For the experiments discussed here, the film was at at-
mospheric pressure and was temperature-controlled to
24+2 °C. At this temperature, 8CB is in the smectic A
phase. In this phase, the elongated molecules align normal to
the plane of the film, which consists of an integer number of
layers. In 8CB, each layer is 3.16 nm thick [41]. In all ex-
periments, we used films that were uniformly thick to within
+3 layers, and which had thicknesses between 30 and 85
layers. Within the plane of the layers, the film closely ap-
proximates an ideal 2D Newtonian fluid. The layered struc-
ture strongly restricts fluid motion perpendicular to the lay-
ers. The film thickness is comparable to the wavelength of
visible light. We determined the thickness of a film by its
interference color under reflected white light, using standard
colorimetric functions [42,43]. During the experiments, we
observed and recorded the reflected film color with a CCD
camera.

Pure 8CB has a low, uncontrolled electrical conductivity
due to residual ionic impurities. To control the conductivity,
we dope the 8CB with tetracyanoquinodimethane (TCNQ)
[44], an electron acceptor. With a concentration of TCNQ
between 5% 107> and 5X 107* by mass, we find that the
sample has a bulk conductivity in the range
1078-1077 Q' m~!. We determine the conductivity of each
film from its Ohmic response below the onset of convection,
as discussed below.

The experimental procedure consists of applying a dc
voltage V across the film and measuring the resulting elec-
trical current /. The inner (outer) electrode is electrically
high (grounded). The applied voltage is incremented in small
steps from O to 1000 V and then decremented to zero. At
each voltage, the current is measured with a computer-
interfaced electrometer, which is equipped with low-noise
triaxial cables. The film resistance is in the T() range and
typical currents are ~1 pA. To determine the dimensionless
charge transport Nu, we require an accurate value for the
critical voltage V.. at the onset of convection. To measure V.,
we use a small voltage step, ~1 V in the voltage range be-
tween 0 and 50 V, which brackets the typical critical voltage
for most of our films. A larger voltage step of ~10 V is used
in the range 60—1000 V. The larger step is necessary to limit
the drift in electrical conductivity due to electrochemical re-
actions in the film. At each applied voltage, we make 100
current measurements spaced by 25 ms. The average values
of the current were used to calculate Nu, as described below.
In addition to the /-V data, we measured the film thickness s
and aspect ratio I". Further details of the material preparation
and experimental procedure can be found in Refs.
[21,24,26].

From the slope of the /-V curve in the conduction regime
where the film is quiescent, we determined the film conduc-
tance C. The Nusselt number is the current divided by the
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conduction current, Nu=//1.=1/CV. The control parameter
R defined in Eq. (9) was calculated using the accepted val-
ues of the viscosity, the measured conductivity, film thick-
ness, and the applied voltage. It varies between 0 and ~10°.
This is moderate compared with the very high Rayleigh
numbers achievable in RBC. However, the critical value R,
of R at the onset of electroconvection is about a factor of 10
smaller than that for RBC. The Prandtl number P defined in
Eq. (10) was calculated from the material parameters and
film dimensions. In the experiments reported here, 5<<P
<250.

Electroconvecting annular smectic films have several ad-
vantages for the study of turbulent scaling, relative to con-
ventional RBC. In RBC experiments, the heat losses through
the sidewalls must be taken into account and corrected for
[4], whereas the annular film has no sidewalls. The charac-
teristic time scales of electroconvection are many orders of
magnitude shorter than in RBC, making data acquisition
much faster. Also, the annular aspect ratio can be easily var-
ied over a broad range (0.3<I"<17 for the experiments re-
ported here). A similar range of I' in RBC is possible in
principle, but would be very cumbersome and time consum-
ing in practice.

Electroconvecting smectic films also have some clear dis-
advantages, relative to RBC. Degradation of the liquid crys-
tal under dc excitation results in significant conductivity
drifts over an experimental run. The drift can be as large as
30% over the course of an experiment. The drift can be par-
tially compensated for by monitoring the change in the criti-
cal voltage V, before and after each sweep of the voltage, as
discussed further below. The total dc charge flow is quite
large: ~0.4 uC over a time interval of ~1 h. The conduc-
tivity drift results in an uncontrolled variation of both R and
‘P, increasing the uncertainty in these parameters. A second
disadvantage is the rather modest upper limit on R, relative
to that attainable in RBC. Higher R could be had by simply
increasing the applied voltage V. However, large electric
fields will eventually lead to dielectric breakdown, destroy-
ing the film. We estimate that with the present material pa-
rameters, the maximum accessible R is about 10°.

Figure 3 shows a representative I-V response. The critical
voltage V. is identifiable by the upward kink in the /-V curve
at V~40 V, after which the film makes a transition from
conduction to convection. When V<V, the fluid is motion-
less and charge is carried by Ohmic conduction. When V
>V, the electrical driving force overcomes dissipation and
the film flows in a series of counter-rotating vortices, which
are laminar for small V> V. The fluid circulation carries an
additional current by convection, as is apparent by the in-
crease in the slope of the I-V curve above V.. At higher
voltages, the vortices become unsteady. The transition to un-
steady flow is identified by a sudden jump in the current
fluctuations at V~200 V, as shown in the inset of Fig. 3.
With even higher driving voltage V=600 V, the flow be-
comes turbulent. It is in this highest range that Nu-R power-
law scalings were observed in the experiments.

A. Dependence on the Rayleigh number R

The electric Rayleigh number R, defined by Eq. (9), is a
dimensionless measure of the external electric driving force.
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FIG. 3. A representative current-voltage curve for an annular
film showing the onset of electroconvection. Data obtained for in-
creasing (decreasing) voltages are shown in A(V). The inset shows

the rms fluctuations of the current vs the applied voltage. Here I
=3.74+0.02 and P=23+2.

Stated in terms of experimentally measurable parameters,
R=¢€,V?/ 03735, Where ¢, is the permittivity of free space, V.
is the imposed voltage, o3 is the bulk conductivity, 7 is the
bulk viscosity, and s is the film thickness. We find the bulk
conductivity o3 by measuring the Ohmic conductance of the
film C=2mso3/In(1/a), where « is the radius ratio r;/r,. C
can be directly determined from the /-V curve, C=1/V, in the
conductive regime for V<V.. Previous experiments have de-
termined the bulk viscosity to be 7;=0.19+£0.05 kg/ms at
atmospheric pressure [25]. As previously mentioned, we de-
termine the film thickness s by matching the observed reflec-
tion color of the film to a color chart.

The dimensionless Nusselt number Nu measures the con-
vective contribution to the charge transport. Nu can be di-
rectly calculated from /-V data; Nu is the total current nor-
malized by the conductive current. The error in the scaling
exponent 7y in the relation Nu~R?” stems from uncertainties
in the film thickness s, the critical voltage V., and the film
conductance C. The main source of error is the drift in the
film conductance C. The drift results in slightly different
slopes for the I-V curves in the conductive regime between
the increasing voltage and decreasing voltage sweeps in a
single experiment. The cause of the conductance drift is not
well understood, but is presumably due to electrochemical
changes in the liquid crystal material. A large drift in the film
conductance can lead to a significant uncertainty in the
Nu-R scaling. In principle, this drift could be completely
compensated for if C were known for every /-V measure-
ment. Unfortunately, the conductance C cannot be indepen-
dently determined from the data while the film is convecting.
We must use the /-V data in the conduction regime, which
occurs before and after the convection regime during one
voltage sweep.

In order to bracket the drift, we have analyzed the data
using two methods. From a fit to the Ohmic response at the
beginning and end of each sweep, we determine two conduc-
tances, Cyp, and Cyqyp. In method A, we use Cy, to reduce the
data obtained when incrementing the voltage and Cyg,, to
reduce the data obtained when decrementing the voltage.
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FIG. 4. (Color online) (a) shows representative plots of Nu vs R
for I'=0.33+£0.01 (A), 3.74+0.02 (), and 6.60+0.02 (O), ana-
lyzed by method A. For these, P=8.8+0.5, 21«1, and 361, re-
spectively. Least-square fits to the power law Nu~R? give best-fit
values y=0.19£0.01, 0.21+0.02, and 0.26+0.01, respectively. The
solid reference lines in the figure have slopes of 1/5 (lower one)
and 1/4 (upper one). In (b) we plot the compensated scaling NuR ™
vs R for the same data as in (a). The inset in (b) shows a more
expanded scale for I'=0.33 (A) and 3.74 (0J).

This method concentrates the conductance error at the maxi-
mum voltage, and thus overestimates the effect of drift at the
highest voltages. In the second method, which we refer to
below as method B, we instead assume that the conductance
C varies linearly between C,, and Cy,,, while the fluid is
convecting. This method can be thought of as a linear ap-
proximation to the unknown evolution of C while the film is
convecting. It probably underestimates the true drift. By
comparing our results using methods A and B, we can gauge
the overall effect of the drift. We have analyzed all the data
using both methods. In some runs, especially large drifts
made compensating for the drift essentially impossible. We
discarded runs in which the difference in Cy, and Cyoyp €X-
ceeded 30%.

Figure 4(a) shows Nu versus R data for three aspect ra-
tios I'. When Nu=1, the fluid is quiescent. When Nu> 1, the
fluid is convecting. For R =10, the data reveal power-law
behavior with Nu~7R? and values of vy close to either 1/5
(for smaller P) or 1/4 (for larger P), in good agreement with
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TABLE 1. Results of fits to Nu~7R?, for different aspect ratios I' and various Prandtl numbers P by
analysis method A. Results obtained by method B are consistent.

r Range of P y Range of R

0.33 6-9 0.21+0.02 8 X 10°-7 x 10*
1.54 19-28 0.21+0.01 1X10*-2x10°
3.74 21-25 0.22+0.02 2X10*-2 X 10°
6.6 25-41 0.24+0.04 2X10*-2 X 10°
6.6 48-61 0.21+0.01 2X10*-3 X 10°
11.1 70-74 0.25+0.02 1X10°-2x%10°
11.1 112-120 0.18+0.01 2X 10%-4 X 10°
11.1 127-136 0.19+0.01 2X 10%-4 X 10°
16.1 205-241 0.18+0.02 8 X 10°-5 % 10°

the theoretical predictions for the small-R regime. Detailed
experimental results for various I" and P are listed in Table I.
The Rayleigh number R range used to fit Nu~7R?Y was be-
tween approximately 100 X R and the final data point at the
largest voltage, 1000 V. Also note that in Fig. 4(a), the criti-
cal Rayleigh number R, at the onset of convection is ~ 100,
and thus a factor of 10 smaller than the corresponding Ra,
=1708 for RBC. This is in agreement with the detailed linear
stability analysis of annular electroconvection presented in
Ref. [24].

From a total of 46 experiments, the scaling exponents y
were either 0.20+0.03 (0.19+0.03) or
0.25+0.02(0.24+0.02) by analysis method A (B), depending
on P. The error bars quoted cover the scatter in y and also
include the uncertainties in the film thickness, the critical
voltage, and the film conductance drift. In Fig. 4(b), compen-
sated plots of Nu/R” versus R are shown. The best-fit ex-
ponent 7y obtained from experiments was used to compensate
the Nu data. Although only about one decade of scaling
range is available, the compensated plots show that a local
power law is an adequate description of the data. This range
is probably too short to resolve details about possible cross-
over scalings [8].

B. Dependence on the Prandtl number P

The electric Prandtl number P defined by Eq. (10) is the
dimensionless ratio of the charge and viscous relaxation time
scales. P~! appears as a prefactor in the nonlinear and time
derivative terms when the equations of motion are written in
dimensionless variables. It is thus reasonable that any depen-
dence on P vanishes for large P. However, for P~ 1 the
turbulent flow and scalings are expected to depend on P. The
relative length scales of the electric potential and viscous
boundary layers, which depend on P, enter into the scaling
arguments of Grossmann and Lohse [6]. For RBC, GL theory
predicts that Nu should exhibit local power-law scalings with
the Prandtl number, albeit with rather small powers [6,8].
RBC experiments suggest that the heat transport is largely
independent of the Prandtl number between 4 to 1350. For
example, it has been found that Nu~7P0% at I'=1 [12]. In
turbulent electroconvection for 2X 10*<R <10, we find

that Nu varies by only a factor of 2 over the broad range 5
<P=<250.

Figure 5 shows a plot of Nu vs P for two aspect ratios
I'=6.6 and 11.1. At each P, we have averaged the compen-
sated data NuR ™" over 2 X 10*<R <10°, with v from the
best fit. The data plotted in Fig. 5 were obtained from a total
of 26 experiments, and results for both analysis methods A
and B are shown.

For a fixed aspect ratio I', our data suggest a crossover
from one local power law Nu~ R? to another as P increases.
Taking I'=6.6 as an example, the Nu versus R scaling for
20<P <40 gives a 7y exponent =1/4, while for 50<P
<70, the exponent is =1/5. The same indications of a 1/4
to 1/5 crossover of scaling exponents are found for I’
=11.1, but for a higher value of P. In the case of '=11.1, we
find y=1/4 for 70<P<80 and y=1/5 for 100 <P <130.
One interpretation of this observation is that the boundaries
between different Nu versus R scaling regimes depend on
the aspect ratio I'. This has not been previously considered in
scaling theories of RBC, which are specific to the case I’

0.6 T T T T T
Z '
Z :
0.5 2 ! 4
7 o
A 2 (lp, :
= x o
0.4 ; S
= . by
=) Z i
Z 0.3r Z P
v 7
7
0.2 Z -
%
Z
7
]
0']20 40 120 140

Prandtl number

FIG. 5. (Color online) Plots of averaged Nu/R?Y vs P for I'
=6.60+0.05 and 11.1+0.1, where vy is taken from the best fit to
Nu~RY. Circular symbols (O, @) show results obtained by analy-
sis method A, while (*) symbols are obtained by method B. Solid
(®) and open (O) symbols indicate when the scaling exponent y
~1/4(1/5). Note that the crossover between 1/4 and 1/5 expo-
nents occurs at different P for different aspect ratios I, as indicated
by the shaded rectangles.
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FIG. 6. (Color online) The average value of fully compensated
Nu/[F(T')R"] vs P on a log-log scale for various I'. Circular sym-
bols (O) show results obtained by analysis method A, while (*)
symbols are obtained by method B. All of these data had a Nu vs R

scaling exponent of y~ 1/5. The solid (dashed) line is the best fit to
~PE with =0.20 (0.26), using analysis method A (B).

~ 1. In annular electroconvection, we may have to consider a
three-dimensional parameter space of Nu scaling regimes
that depends on R, P, and T'.

The GL scaling theory applied to annular electroconvec-
tion yielded an explicit aspect ratio dependence for the di-
mensionless charge transport Nu, given by the function F(I")
defined in Eq. (37). Thus, we can take the varying aspect
ratio into account by dividing the Nu data by the theoreti-
cally predicted value of F(I'). Figure 6 shows such a fully
compensated plot of NuR™"F~! versus P for various aspect
ratios I'. Our data span 5<P=<250 and 0.3<I'<17. All of
these data had y~1/5. A weak dependence on P remains,
amid considerable scatter. A power-law fit ~P# gives
=0.20+0.04 (analysis method A) and 0.26+0.05 (analysis
method B). The theoretical prediction is Nuc F(I')R3P!>
for the regime of low R and Nu. Thus, our measured value
of B is at least consistent with the GL theory applied to
annular electroconvection for this specific regime, although
the scatter is obviously too large to definitively establish that
a power law is present. For the adjacent regime where 7y
=1/4, we have less than a decade of P range, which is in-
sufficient even to look for such consistency.

C. Dependence on the aspect ratio I'

In the scaling theory described above, we explicitly ac-
counted for the aspect-ratio dependence, a consideration
omitted in the GL theory for turbulent RBC [6,8] which
treats the case I'=1. In our formulation of the GL theory for
annular electroconvection, we found that the charge transport
is modified by an aspect-ratio-dependent prefactor F(I")
given by Eq. (37). Unlike the previous studies of RBC in
Ref. [34], we find the aspect ratio dependence is not a power-
law scaling but rather a simple function of the annular ge-
ometry. To make a direct comparison to previous turbulent
RBC data, we consider a new function kF, which we define
to be F(I') multiplied by a normalization constant k, chosen
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FIG. 7. Plot of kF(I") vs T" from the scaling theory (solid line),
with k chosen so that kF(I'=1) is unity. Experimental data for tur-
bulent electroconvection are shown by solid symbols (@) for
method A and by (*) for method B. The data span 5<P=<250. The
inset shows the same data on a logarithmic scale.

such that kF(I'=1)=1. The appropriate value of k is /[ (7
+1)In(27+1)]=0.382. The function kF(I") decreases mono-
tonically with I' with its greatest variation for I' <2, and is
within 2% of its limiting value kF()=0.764 for I'>7.

Our experimental data span the range 0.3<I'<<17. Be-
cause our data span the wide range 5 <P <250, we expect
some corrections due to changes in the Nu versus P scaling,
predicted by the theory and also observed in the current ex-
periments. To separate the aspect-ratio dependence of Nu and
to compare it with the theoretical prediction Nu
« F(D)RYP?, we divide Nu by R?P° and take its averaged
value over the R range from 2 X 10* to 10°. Nu could still
depend on I'-independent prefactors which are not captured
by a scaling theory. These prefactors cannot be separately
extracted from the experimental data and may change for the
various scaling regimes [8]. To avoid these, we restrict our
discussion to those data for which the Nu versus R scaling
exponent vy is close to 1/5. We extract the exponents y from
the power-law fits of Nu~ 7R to the experimental data. We
use 6=0.20 and 0.26, which are obtained by the power-law
fit of Nu/[F(I')R?]~P° shown in Fig. 6, using the two
analysis methods A and B, as described above. This effec-
tively completes a circle of mutual consistency checks which
delivers a self-consistent experimental result for the F(I")
dependence alone. Using one free parameter for all the data,
we scale these data so that F(I'=1)=1, to allow a compari-
son to similarly normalized RBC data. Our data for six dif-
ferent I', obtained from a total of 36 experiments, are in
reasonable agreement with the theoretical prediction for kF,
as shown in Fig. 7. The errors are representative of the scat-
ter in Nu/RP? among runs for each aspect ratio.

The data at I'=6.6 and 16.1, which deviate most from the
theoretical prediction for kF, consist of a few runs which
have rather high values of P, about 60 and 220, respectively.
This deviation may be due to the difficulty of finding the
appropriate P scaling exponent 6. For relatively small R and
high P, scaling theory [8] predicts that Nu becomes indepen-
dent of P, scaling with R3P0. It is possible that our few
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data points with very high P might fall into the scaling re-
gime y=1/5, 6=0 instead of y=1/5, 6=1/5, as we have
assumed. Thus, the F(I') data at ['=6.6 and 16.1 may be
significantly underestimated in Fig. 7. Many more experi-
ments with a wider range of parameters would be required to
systematically explore the various scaling regimes, bound-
aries, and crossover effects.

Data from several turbulent RBC experiments [3-5,15,45]
for various values of I' are also in broad agreement with the
function kF(I), in spite of the difference in geometry and the
higher range of Rayleigh numbers. Details of this compari-
son may be found in Ref. 17. One should only expect the
comparison between the aspect ratio dependence for RBC
and the function kF to be reasonable in the limit I'—oe.
Nevertheless, we find approximate agreement, in spite of the
difference in geometry, the smaller aspect ratios, and the
higher range of Rayleigh numbers.

IV. CONCLUSION

We have theoretically and experimentally studied how the
dimensionless charge transport Nu scales with the Rayleigh
number R, the Prandtl number P, and the aspect ratio I, for
turbulent electroconvection in a 2D annular film. The elec-
troconvection is driven by an unstable charge distribution
that is analogous to the inverted fluid density distribution in
3D, thermally driven RBC. The strong similarity of the gov-
erning equations between electroconvection and RBC al-
lowed us to adapt GL scaling theory [6,8] and experimentally
investigate its consequences. The unique annular geometry
of the electroconvection also made it possible to explicitly
account for the aspect ratio dependence of the scaling rela-
tions.

From the theory, we found various regime-dependent lo-
cal power laws of the form Nu~ F(I')R?P?, with the same
exponents as those for turbulent RBC, but with an additional
aspect-ratio-dependent prefactor F(I'). F(I') is a nontrivial
function of the finite annular geometry, rather than a power
law.

In experiments, we found that the exponents for the Nu
versus R scaling were consistent with 1/4 or 1/5, for 104
<R =<2X10°, in reasonable agreement with the theory for
the regime in which R and Nu are both small. The Nu mea-
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surements for 0.3<I'<<17 and 5<<P<<250 are consistent
with the theoretical prediction for the regime in which Nu
~ F(T)R'SP'YS. Furthermore, our experimental data suggest
I'-dependent crossover between different scaling regimes.

The weak dependence of F on I for large I' suggests that
the global heat or charge transport approaches a universal,
I'-independent limit for laterally extended systems. This con-
jecture suggests that future work on the charge or heat trans-
port in turbulent convection should focus on large I" systems.
Although such systems can be difficult to achieve experi-
mentally, they are common in nature.

The parameter space of R, P, and I is, however, very
large. In this study, we have only sparingly sampled from the
experimentally accessible portion of this parameter space. In
spite of the general consistency between the experiment and
theory, it is difficult to draw definitive conclusions about the
scaling assumptions underlying the theory. The range of pa-
rameters we can access experimentally is too narrow to span
the various regimes. Also, the decomposition of the dissipa-
tions into bulk and boundary contributions is not directly
testable with our current experimental techniques.

The great strength of the GL scaling analysis is its gener-
ality. It can be applied as easily to our 2D electroconvection
as 3D RBC. The relative simplicity of the 2D fluid mechan-
ics in electroconvection suggests that we can greatly extend
the range of parameters by numerical simulation. Simula-
tions will also allow us to test directly the scaling assump-
tions. The GL theory could also be extended to the case of
convection with a superposed shear [22,24,26-28], a situa-
tion which is experimentally feasible in electroconvection
but not in RBC.

The nearly power-law scaling of the globally averaged
heat or charge transport in turbulent convection poses an
interesting and difficult problem. Any approach to this prob-
lem must creatively combine theory, simulation, and preci-
sion experiment. The unique features of thin-film electrocon-
vection give us a new vantage point on this challenging, and
as yet unsolved, problem.
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